While sheltering in place this week, I’ve been tinkering with a small-scale setup for solar power generation. I’ve got a 100 watt solar panel, and access to the sun. What fun things can I do with this? Is it actually useful? Let’s find out.
My first thought was to power some equipment directly from the panel, but that’s not practical for most situations. Even if I could tolerate only having power during daylight hours, the output voltage and available power from a solar panel fluctuates too much from moment to moment. I’d either need a DC-to-DC voltage converter with a wide input range, or some equipment like a pump that can tolerate a wide voltage range and doesn’t mind frequent stopping and starting.
For most purposes it’s better to charge a battery from a solar panel, and then use the battery to power other equipment. I already have a solar generator (a large battery with integrated charger, inverter, and other conveniences) that was ideal for this experiment. I only needed to connect the panel’s MC4 output to the solar generator’s MC4 input adapter cable, stick it in sunlight, and wait.
100 Watts? Not So Much
With a 100 watt panel and something close to 12 hours of daily sunlight, I expected to get something close to 1200 watt-hours of electric production daily. My solar generator has a 150 Wh battery, so it should only take about 1.5 or 2 hours to charge. So I confidently set up the equipment, and after an entire day in the sun I only managed to increase the battery level by about 40%. What?
Maybe 1200 Wh was a little unrealistic. Or a LOT unrealistic. After some reading, I concluded the panel would probably never output 100W unless it was noon on a bright sunny day somewhere near the equator. But I might hope to get about 70W at noon at my latitude, with lower power output during the morning and late afternoon. Factoring in shadows from trees and other buildings, I decided I might expect to get about 400 Wh of average total daily production, with more in summer and less in winter.
OK then, 400 Wh should still be enough to charge my solar generator’s battery almost three times during the course of a day. So why wasn’t I getting that result?
Measuring Solar Panel Output
It’s not so easy to measure the power generated by a solar panel. With a multimeter I could measure the open circuit voltage, and the short circuit current, but multiplying the two figures wouldn’t tell me the power. I need a load to get a useful measurement for power output. But a fixed resistive load won’t work, not even a 100W-rated resistor, because it likely won’t bring the solar panel to the correct voltage for optimum operation. That optimum voltage varies from moment to moment, based on the sunlight hitting the panel. To do this right, I needed a solar charger like the one integrated into my solar generator. Then I needed to measure the current and the voltage simultaneously. I could have built some wiring adapters and used two meters for the measurements, but instead I bought a cheap inline power meter and soldered MC4 connectors to it.
I measured 19.7W in full sun at noon. Huh?! No wonder the solar generator’s 150 Wh battery takes forever to charge. Is there something wrong with my panel? After several days of tinkering with the setup under different lighting conditions, I never saw a continuous output higher than 23W. Most of the time it hovered right around 20W. Hmm.
I began to suspect the solar generator was at fault. Sure enough, buried in the manual were the specs for the solar input: 13V-22V / 2A max. With my solar panel, that means I’m theoretically limited to about 40W max (2A at almost 20V). I’m not sure why I rarely saw more than 20W though, and never saw more than about 1.3A of current. Maybe the integrated solar charger is even more limited than the manual suggests? Maybe I have bad wiring, or another problem?
As an engineer, 20W from this panel is insulting! Even if I have no practical need for this solar panel, losing 80% of its output is unacceptable to me. To save my pride I’ve begun to research plan B, which will involve a stand-alone solar charge controller featuring a much higher maximum charging rate, and a separate battery. More about that soon. Maybe I’ll put together a solar-powered Mac Plus.
Finding the Parts
Some links below may be affiliate links. BMOW may get paid if you buy something or take an action after clicking one of these. As an Amazon Associate BMOW earns from qualifying purchases.
Here’s the equipment I used.
Renogy 100W monocrystalline solar panel. You can find slightly cheaper panels, but the Renogy has an extra-sturdy aluminum frame and a strong reputation for quality. This particular panel is also more space-efficient than most other 100W panels, if minimizing area and weight are important to you.
Suaoki 150Wh portable power station. Despite its annoying 2A charge rate limitation, I love this thing and use it all the time. You can charge it from solar, from a car, or from a wall plug. It has a built-in 100W inverter for running small appliances, USB ports (including a Quickcharge 3.0 port) for charging phones and tablets, 12V ports for DC lights and other appliances, and an integrated high-brightness emergency lamp.
200A Inline Watt Meter. I’m not confident it will actually handle 200A, but it works nicely for lower currents involved in small-scale solar. It shows volts, amps, watts, accumulated amp-hours, watt-hours, max watts, and min volts.
MC4 Male/Female Solar Panel Cable Connectors. Solder these to the watt meter.
DROK 12V Battery Meter with adjustable limits. Other cheap battery meters typically have fixed voltages for the 100% and 0% charge state. This one makes it possible to set custom values for the upper and lower bounds. Measured from one of the Suaoki’s 12V ports, I measured 12.33V fully charged and 8.96V just before the low-voltage cutoff disconnected the battery. The discharge curve isn’t linear, so the meter won’t go smoothly from 100% to 0%, but this is still vastly better than the simple built-in 5-bar power gauge on the Suaoki.